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The massive in-memory processing reduces com-

putation time from minutes to milliseconds, even 

nanoseconds. Gemini excels at large (billion item) 

database search applications, like facial recognition, 

drug discovery, Elasticsearch, and object detection. 

Gemini’s scalable format, small footprint and low 

power consumption, make it an ideal solution for 

edge applications where rapid, 

accurate responses are critical.

This White Paper is sponsored by GSI Technology, 

Inc. Founded in 1995, GSI Technology, Inc. is a leading 

provider of SRAM semiconductor memory solutions. 

They recently launched radiation-hardened memory 

products for extreme environments and the Gemini® 

APU, a memory-centric associative processing unit 

designed to deliver performance advantages for 

diverse AI applications. The Gemini APU’s 

architecture features parallel data processing with 

two million-bit processors per chip. 

About
RE•WORK
As well as creating digital content, RE•WORK is first 

and foremost the global leader in AI and Deep 

Learning events. RE•WORK creates and organizes 

globally renowned summits, workshops and dinners, 

as well as virtual events, bringing together the 

brightest minds in AI from both industry and 

academia. At each RE•WORK event, we combine 

the latest technological innovation with real-world 

applications and practical case studies. You can 

learn from global pioneers and industry experts, and 

network with CEOs, CTOs, data scientists, engineers 

and researchers disrupting their industries with AI. 

We also provide an analysis of current trends and 

innovations, through podcasts, white papers and 

video interviews. Additionally, we have an extensive 

on-demand video library of presentations from 

world-leading experts in AI. We cover topics such as 

Deep Learning, Machine Learning, AI in Healthcare, 

Women in AI, AI in Finance, Reinforcement Learning, 

Computer Vision, Autonomous Vehicles, 

Conversational AI, AI for Good, Responsible AI and 

more.
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Data makes the world go round, or at the very least, 

is the underlying heartbeat of all Artificial Intelligence 

(AI) and Machine Learning Development. Whilst 2020 

was somewhat of a testing and tumultuous year, the 

development of AI infrastructure and the collection of 

data for this purpose continued, at a faster pace than 

previously seen. Albeit behind the scenes, 2021 could 

be the year in which we see rollout of AI in societal set-

tings. None of this, however, would be possible with-

out the large swathes of data collected, which in itself, 

could potentially be a bigger challenge than creating 

the models themselves. 

The key components of a data science project, and 

the different kinds of challenges associated with them, 

play an important role in identifying data limitations. 

Availability, cost, privacy, ethics and processing data 

collections all stand in the way of wide scale 

development at all industry levels, as well as rollout for 

consumer use. It is widely believed that we will not be 

experiencing 100 years of progress in the 21st century, 

but rather closer to 20,000 years. That is dependent, 

however, on the large amounts of data needed to be 

collected. Therefore it is only through consistent 

experimentation that the future potential of machines 

can be met. 

The stark reality is that we have moved through a 

‘generation of big data’ to daily generation, from the 

many mobile applications, messages sent, and the 3.5 

billion daily searches. One of the key challenges to this 

acceleration is in the data exchange required 

between processors’ and memory, as well as data 

transfer and storage capabilities. Furthermore, data 

availability is not the same as data integrity, data 

retention or data reliability.

While all these concepts have some similarities, they 

are also very different from one another. Hence, 

potential scarcity of usable and good quality data 

could create a world in which building suitable 

models that work cross-industry is so close, yet so far. 

From ElasticSearch to Fake news and Edge-

computing to Data Limitation, the following white 

paper takes the concept of data and addresses a 

variety of both accelerating and restricting factors, 

as well as discussing relevant industry developments 

and their effect on the current state of data. 

Introduction

One of the biggest limitations to workload 
acceleration is the limitation in data 

exchange required between processors’ and 
memory.”

-Mark Wright, GSI Technology
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The scope of Artificial Intelligence (AI) is getting broader 

day by day. Data is becoming increasingly more 

necessary to solve ongoing real-world problems, and 

the same is true for the challenges that come with them. 

Data challenges are highly related to the definition of a 

problem, data types, as well as availability, and privacy, 

among other topics. 

In this chapter, we discuss the most common data 

challenges in the private and non-profit sectors, as well 

as the currently trending solutions in the AI industry. In 

order to illustrate the challenges of dealing with different 

data types, we present case studies involving topics such 

as mobility and sustainability, amongst others.

In a data collection stage, the most common 

limitations are:

 Availability & Cost: knowing where to find 

available and relevant sources is not an easy task. The 

most common options to overcome this challenge are 

the usage of open source data or acquiring data from 

data mining companies, which naturally come with a 

cost. Another possibility is the introduction of artificial 

data, as discussed later.

 Privacy & Ethics: another great concern after 

finding data is to guarantee that the privacy of 

individuals is not compromised. In the same way, 

concerns about data misuse in terms of ethics, such 

as public manipulation [1] and bias against gender or 

ethnicity has led to efforts on data policy and 

regulation [2]. In particular, the European Union has 

adopted data protection regulations which are valid 

for all member countries [3].

Finally, when it comes to preprocessing, each kind of 

data has its own challenges, going from resolution in 

images to a slang in text. In the next section, we 

introduce some of the most common data types and 

later discuss specific limitations in use cases, along 

with possible solutions.

Different Types of Data: 

The digital transformation alongside adaptation of AI 

in all spheres of life has made data become a thorny 

subject as termed in a Frobe article [4].

Data Limitations in Common Industry and 
Non-Profit Applications 
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1

2

Rosana de Oliveira Gomes, Lead Machine Learning Engineer, Omdena; Harini Suresh, PhD 
Researcher, MIT; Erum Afzal, ML Engineer, Omdena.

Background:
The key components of a data science project, and 

the different kinds of challenges associated with them, 

play an important role in identifying data limitations. In 

particular, project setting, data collection and 

preprocessing are the initial stages of a project in 

which practitioners find most of the data challenges.

Having a clear problem statement is not only crucial 

to avoid data limitations, but also to ensure success 

as a whole. This entails having clear goals, from which 

a team can brainstorm on data usage. In some cases, 

the team has data available and needs to figure out 

what insights can be extracted from it. In other cases, 

data is not available and a data collection phase 

becomes necessary.
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Source: [https://sigmoidal.io/machine-learning-terms/]

Image: Frequently used for object identification or 

classification tasks. Regarding object detection and 

classification, common challenges are identifying 

different objects that belong to the same class (such 

as chairs with different shapes), along with objects 

in different scales or perspectives. A solution for such 

challenges is the use of pretrained models, such as 

YOLO [6], which is already trained in a massive data-

set named Common Object in Context (COCO) with 

1.5 million object instances and 80 object categories 

[7]. In the case of detecting specific objects which are 

not part of pretrained datasets, a second option is to 

manually annotate images with annotation tools [8]. 

Another challenge related to image data include 

several types of image extensions which are not 

always compatible with models. For that, one can use 

computer vision libraries which help convert the 

extensions [9]. 

Source: [https://sigmoidal.io/machine-learning-terms/]
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Whether it is for forecasting, analysis or automation, 

all depends upon the good quality of clean data and 

dataset.

Features in a dataset have their own types, 

categories or classifications that being unique in 

nature bring their own kind of challenges for each 

category. It is crucial to understand what, when, and 

why which kind of data is used in order to get better 

insights from it. In what follows, a few specific 

classification of data types is discussed along with 

their challenges and appropriate solutions.

Numerical: the most common type of data, it 

usually appears in the form of charts and tables with 

sequences of discrete or continuous numerical 

values. Numerical data is applied to all sorts of 

problems being forecast the most common, for 

example, estimating consumer expenses in finance. 

Limitations associated with numerical data include 

statistical significance and interpretation. In order to 

properly interpret numerical data, it is necessary to 

have enough data able to provide proper 

distribution suitable for statistical analysis of the 

problem. Accounting for thorough units and data 

scaling checking during preprocessing, along with 

assigning proper error metrics for models are good 

practices for ensuring a valid interpretation of 

numerical data.

Text: normally in the form of words, sentences and 

paragraphs. It can be collected as text reviews, 

discussions on social media, or simply private text. 

Some of the challenges with text data are their raw 

and unstructured form. Nowadays, text processing 

libraries such as Natural Language Toolkit (nltk) [5] are 

extremely powerful when it comes to get insight from 

the textual information.
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these limitations. 

Explicitly addressing the issue of data availability: 

scarcity of data makes it impossible to build suitable 

performance models. Furthermore, when there is little 

data available, a considerable amount of work has 

to be invested on expanding the dataset. Now when 

it comes to applying AI to social impact and democ-

ratizing data-driven solutions, the cost of data plays 

an important role in what can be done. Data can 

be unaffordable for nonprofit organizations or local 

institutions, which are usually the ones tackling social 

issues. 

Possible solutions to overcome data scarcity and 

high costs are by the creation of new data. Deep-

fake, popular innovative AI technology, can be used 

for data augmentation based on existing data 

to increase its quantity [14], especially for artificial 

image, sound or video data. When dealing with text 

data, a possibility to overcome data availability is by 

a system to collect data from resources which do not 

require any cost. A simple form of doing so is through 

surveys and on a higher technical level, data can 

also be collected by chatbots. Survey forms can have 

queries/labels and can be shared across the world 

for humans to enter data. Likewise, a simple chatbot 

with basic input data and queries can be built to 

extract more relevant information from users. 

However, such data creation techniques raise the 

topic of privacy and ethics once again, and care 

needs to be taken to make data anonymized and 

safe. 

The proof of concept is the final part of the artificial 

data generation, through the verification of the 

model performance.

Another common form of text data collection is web 

scraping, in which one performs keyword similarity 

mining from online sources such as social media like 

Twitter, Facebook, Reddit, etc. 

RE•WORK 2021 | WHITEPAPERCHAPTER 1

Geospatial: Applying machine learning algorithms in 

real-time and having the benefit of identifying the 

location comes with the usage of geospatial data. 

Geospatial data finds its application beyond Earth, in 

a different planet where the location/presence of 

water bodies is vital for the existence of human life. 

Geospatial data is simply a combination of satellite 

imagery associated with geographical information. 

Geospatial data is commonly used to tackle problems 

which require specific visual perspective, such as 

natural disasters. While accessing this data is 

challenging considering the cost factor, a major 

problem faced is the resolution level of the image 

making it difficult to run a few models. However, the 

introduction of GANs [10] have come to the rescue 

where the resolution of the tiled image can be 

increased by altering the pixels leading to the 

smoothening of edges and images.

Sound: advances in speech recognition are making 

sound data become a popular data type in industry. 

Applications range from personal assistants and 

dictation softwares to medical applications in 

transcriptions and ultrasound analysis [11]. Regarding 

speech recognition, suitable training data still poses a 

significant limitation on model accuracy, as 

availability of data with a broad range of accents and 

voice tones is still lacking overall in industry. A solution 

currently ongoing for such a challenge is collecting 

more diverse and unbiased voice data from different 

areas of the world [12]. A more state of the art 

limitation about sound data comes from background 

noise, being a current topic of broad research in the 

field [13] and having as possible solution the training 

of background that can be subtracted from the raw 

data during preprocessing.

Data Creation
The necessity of the generation of artificial data is 

based on the cause and effect of data limitations. 

The cause of data challenges can be the availability, 

amount and cost of data. Data creation helps solve 
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However, in the case of supervised learning this is 

directly related with the quality of the data labeling. 

When alternative sources of data are used, it is 

difficult to mine labeled datasets. In order to overcome 

such issues, annotations help crafting the labeled 

dataset with a bit of human effort. Annotations range 

from text to image data with compact user-

interfaces provided by annotation tools [16, 17]. When 

humans label the data and generate a labeled 

dataset, it can be used as a base source of data in 

order to build reliable models.

Case Studies 

Three cases studies are discussed below, in order to 

better illustrate the data limitations in the case of text, 

video and geospatial data. 
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Addressing vulnerability with NLP 

Data Type: Text

Case: Identifying online abuse 

Description: Most online communications happen via 
private chat, comments on the content shared at social 
media or in forums. In such contexts, predators attack the 
persons through abusive chat. NLP models can help  pre-
dicting the risk of abuse in online environments [18].

Limitation: Data privacy and availability. Personal stories 
and messages in online forums are most of the time not 
publicly available. Public text associated to abuse such as 
comments and reviews is usually biased, given that report-
ed content tends to be removed from websites. Moreover, 
identifying meaning of slang and non-text features, as 
emojis, is also a common NLP challenge.

Computer Vision for Emergency Response 
 
Data Type: Geospatial

Case: Emergency Response 

Description: satellite images provide a privileged per-
spective of locations on Earth during emergencies. In the 
case of natural disasters or human conflict, common road 
accesses may be blocked and satellite images provide a 
way to capture the current status of the region and help 
providing faster help. DataKind has applied object 
detection to identify the number of refugees in a camp for 
an awareness campaign [20].

Limitation: image resolution / cost of data
Solution: GANs for improving resolution [10]/ possible use of 
drones for data collection on closer perspective.

Computer Vision Applications for Autonomous Driving 

Data Type: Video

Case: Self-driving Cars

Description: AI steps into the shoes of human brains and 
drives the car by automating the knowledge/learning 
gathered from humans. It is responsible for automatically 
detecting humans, lanes and traffic signals.
Limitation: While considering safety on building self-
driving cars, the volume, diversity and accuracy of the 
training data has to be kept in mind

Solution: The data is collected from Radar, Lidar and 
Camera increasing the redundancy factor where each 
model can succeed with one type at the least. The 
accuracy of the data can be improved with annotations 
focussed on critical 3D data labeling. [17, 19]

Solution: Collaboration across sectors in order to 
provide access to anonymized data from online forums and 
platforms where predatory behavior is common, such as 
for example gaming scenarios. Acquisition of more survivor 
stories through anonymized surveys can help identifying 
typical language and non-text features in abuse stories 
and contextual information, to help building robust models.

A common limitation associated with this practice is 

the issue of disparate sources [15], as the data col-

lected will differ in structure, length and description. 

An important step on preprocessing web scraped 

data is to balance the data according to the pa-

rameters mentioned above. Another important task 

is checking the use licensing of such data to avoid 

legal conflict. 
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Conclusion
Data Science and AI are among the most powerful 

tools in the tech industry in the 21st century. Behind 

all the advances AI can bring to society, there is data 

driving all the learning processes of models and tools 

used by it. Therefore, data limitations play a critical 

role on how the whole field of Data Science evolves 

and it is by overcoming these challenges that 

important advances are made.

Data limitations can be strongly problem dependent. 

Each field of AI is developing its own libraries to deal 

with preprocessing of text, image, among others. It 

is possible that the preprocessing stage for specific 

data types becomes automated by standard

 industry practices in the near future. 

As the need for more data in more diverse forms 

becomes more clear to several sectors, such as 

speech and face recognition, additional open source 

and collective collaborations on data collection and 

labelling are expected [21]. In a similar fashion, there 

have been several efforts on data policy and reg-

ulations across the globe by governments [2,3] and 

institutions [22]. The topic of AI ethics has gained 

significant impulse in 2020 and is expected to 

continue growing as more diverse communities start 

to have more access to data-powered technologies.
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We are in the midst of technological convergences 

that will disrupt industries and provide new industry 

opportunities. One such alignment is the use of 

approximate nearest neighbor (ANN) with in-

memory acceleration processing to provide near 

real-time responses for billion-scale elastic search 

operations.

Elasticsearch is a search engine that takes JSON 

requests for document searches and provides JSON 

data as results. The elastic search data format is a 

document which is structured data encoded in JSON. 

While Elasticsearch started as a search engine for 

text, the database can be any type of data with each 

document having a unique ID and a data type. The 

structure is “schema-free” allowing the documents to 

be defined to whatever the user needs and further 

flexible in what and how they are indexed for 

searching. In different examples of elastic search 

databases, documents can be:

• Pictures: used to identify consumer pictural search 

requests or similar interests.

• Network data logs: used to identify network  

intrusion, anomalies, or load imbalances.

• Product receipts: used to identify customer  

purchasing patterns and improve stock rotation.

• Network architecture: used for automatic sharding 

and replication.

• Text documents: used to find specific literary  

instances.

• Text documents with one-to-many mappings: 

used for computer assisted translation.

Elasticsearch was designed to be distributed and

Convergence of ElasticSearch, ANN and 
Compute-in-Memory
Mark Wright, Director of Marketing, GSI Technology
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thus scalable in infrastructure, and flexible for local 

server, remote server, or cloud-based operation. 

With an open and restful API structure, the extensible 

search engine is easily used with plugins. One such 

plugin is from GSI technology that adds the following 

improvements: hardware accelerated ANN, the use 

of vectors for multi-modal search, and merging score 

results.

Elasticsearch counts on its distributed computing 

support for scalability, and its fast speeds are in the 

order of seconds for million-scale database 

searches. Because of its distributed nature and 

sharding support, Elasticsearch supports duplication 

of data for parallelizing the search and speeding up 

search for larger databases. Core Elasticsearch uses 

a computationally heavy exhaustive match (match 

all) which slows it down or makes it very expensive in 

duplicate hardware to support large-scale 

database search. Approximate Nearest Neighbor 

(ANN) search is a technique that can be used to 

increase the database size that can be searched 

by first looking for similarity in common groupings 

then doing the final search within those one or more 

groupings. While ANN provides a methodology for 

Elasticsearch to support very large databases, such 

as those at billion-scale entries and above, ANN is 

compute exhaustive also and has been a challenge 

to accelerate due to the constraint of moving the 

databases between GPU or CPU cores.
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One of the biggest limitations to workload 

acceleration is the limitation in data exchange 

required between processors’ and memory. A major 

drawback of the Von Neumann architecture used in 

modern processors is the overhead of data transfer 

between processors and storage. The CPU must fetch 

data for every operation it does. This architecture is 

even more inefficient in an offload acceleration 

environment. The performance of such systems is

 limited by the speed at which data can be exchanged 

via memory by the host requesting the operations and 

also compute engines performing the operations.

Figure 1. Constant Data Transfer Reduces Performance of 
Accelerating Servers.

Architectures that reduce the flow of data from the 

memory are being studied or evaluated to reduce the 

Von Neumann bottleneck. The Von Neumann 

bottleneck is particularly egregious when you’re 

dealing with memory intensive artificial intelligence 

applications. The operation of AI-related applications 

depends on the fast and efficient movement of 

massive amounts of data in memory. Trained data-

bases need to be loaded into working memory and 

vectorized input queries then processed and also 

loaded for comparison functions to operate.
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One proven technology that is already in the market is 

the Associative Processing Unit or APU. The beauty of 

in-memory acceleration is that storage itself becomes 

the processor. This is not a massive array of 

processing cores with cache memory close by, but a 

memory array with compute units built into the 

read-line architecture. Thus, the APU is differentiated 

by having the memory array capable of accelerating 

compute. This type of “accelerated” processor has 

been shown to accelerate performance by orders of 

magnitude while reducing workload power 

consumption of standard servers.

CHAPTER 2

The ability to use the GSI Elasticsearch 
plug-in without the requirement to reindex 

documents to support vector search is a huge 
simplification for customers.” 

- Pat Lasserre, Director of Strategic Sales and Business 
Development, GSI Technology.

On-prem or cloud based, ES with ANN 
addresses savings in DB platforms which are 
very costly from plant, network, server, and 

energy perspectives.”

- Avidan Akerib, VP of Associative Computing,  

GSI Technology

This is a solution to database search for which 
GPU adoption is very low.”

- Avidan Akerib, VP of Associative Computing,  
GSI Technology
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Combining Elasticsearch, ANN, and APU acceleration 

provides less latency and more queries per second. 

It also provides capability for billion-scale database 

search support. Running AWS Elasticsearch or

using AWS compute resources and running Elastic.co 

Elasticsearch equally accelerate through the use of 

the built-in API plugin capability. The figure following 

shows use with the additional step of the AWS search 

sending the ANN lookup for APU acceleration done 

as a transparent-to-the-user step.

Figure 2. Transparent Elasticsearch Cloud Acceleration 

using Plug-ins.

Performance for standard GIST-960-euclidean and 

SIFT-128-euclidean are shown. This test is for a 1M 

entry training database so ANN was not required or 

used. A flat search acceleration was used to improve 

times but also provided a system power 

consumption savings coming in at 240W total, versus 

325W without the APU (test run locally and not in 

cloud). All cases use a single Intel Xeon E5-2680 v3 

2.5GHz CPU as the host.

Figure 3.  SIFT-128-euclidean vs SIFT-128-APU Results.

Figure 4.  GIST-960-euclidean vs GIST-960-APU Results
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Preliminary results for Deep1B performance show 40mS 

P95 search latency in a system of 1 Intel 5115 Gold Xeon 

CPU and 2 APU’s. Vectors are DEEP1B with 96 features. 

Recall@10 is better than 0.9. The ANN is split into 1M 

clusters with 1000 records per cluster. Getting results in 

less than internet latency from such a large 

database: what new opportunities can this 

convergence enable?

Further Reading
Scalable Semantic Vector Search with Elasticsearch

CHAPTER 2

Retail fashion are a particular driver of mul-
timodal search because they rely heavily on 
visual search since style is often difficult to 

describe using text.”

- Pat Lasserre, Director of Strategic Sales &  
Business Development. GSI Technology 

http://ining database so ANN was not required or used. A flat search acceleration was used to improve times but also provided a system power consumption savings coming i
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What is Data Availability?

It is no longer new that we are in the era of big data. 

We all generate it daily. Every tap on one mobile 

application, every message sent etc. becomes a part 

of big data. About 3.5 billion searches data is 

everywhere, it is locked up, or scattered everywhere 

that it is not so available for use.

Data availability is having access to needed data at 

the time it is needed. This definition focuses on three 

important aspects of data availability.

 A) Accessibility

 B) On-demand

 C) Mission-centered data

Accessibility is very close to availability in that it is 

concerned about being able to retrieve data. 

Accessibility is about ease of use of data. Decision 

making by organizations is guided by information 

retrieved from data, not having access to the data 

that will provide this data is a challenge. On-demand 

is about the timeliness of the data. Data is said to be 

available if one can access and use it at the time it is 

needed. Mission-centered is about having access to 

the data that will provide information that meets the 

need of the user/researcher. So, if I need network 

traffic data for time series study, but the data I got 

does not have time features, even if all other 

information is needed, the data is not available for me.

What Data Availability is Not

Data availability is not the same as data integrity, 

data retention or data reliability. 

While all these concepts have some similarities or 

meeting points, they are different from one another. 

Available data may not be accurate, complete, or 

reliable. 

Limitations of data availability.

Data availability has a lot of challenges which has 

been a bottleneck for researchers and organizations 

alike, including:

1. Data compatibility

2. Storage failure

3. Server/Network failure

4. Cost

5. Poor data quality

Data compatibility: Data types or formats required on 

different platforms or applications can be different. 

This affects the availability of data in these scenarios. 

Another compatibility issue happens with legacy data, 

these were usually in a strict format that are hard to 

work with now. However, there are now several data 

transformation platforms available as well.

Storage failure: This is about the limitation of storage 

spaces and devices. No matter how good a storage 

device is, there will be a time they age away. And 

in situations where the cloud is being utilized as it is 

common today, once you grow your data storage to a 

size, there are no more storage spaces and thus your 

data availability is affected.

Server/Network failure: When the network crashes, 

access to data is impeded. Data storage and retrieval 

is also impeded.

The Limitations & Advances of Data 
Availability 
Adebunmi Odefunso, Software Engineer & ML Practitioner, Purdue University
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Cost: In this age of cloud computing, all the benefits of 

the cloud comes with an additional cost. It takes a lot 

of budgeting and planning to maintain having data 

available and accessible every time it is needed. The 

various cloud companies have tiers of storage that 

makes cutting down costs possible. Albeit; the cost of 

this service can limit data availability.

Poor data quality: While data quality is not a 

determinant of data availability, it can impede data 

availability. Data with very poor quality can not be 

used to make any informed decision, thus it is only 

occupying storage space, but it is not available. The 

quality of data collected can be affected by the 

framework behind the collection points. Poor 

quality data will not only waste storage space, it will 

also waste cost and effort, thus it is important that the 

window of data collection by organizations be well 

structured to make data available for use.

The Solutions and Future of Data Availability

Technology keeps changing face frequently and new 

solutions to problems that seem very tough to 

overcome are springing up every day. New 

technologies are rising by the day on data format 

conversion; the future of this will be automation. 

Automated data format conversion is the future of 

data format transformation. This will make data highly 

available and accessible. 

High quality data starts with a high-performance data 

processing pipeline. The data collection or entry point 

must be made flexible and sensitive. Early detection of 

errors at collection can save the system. Poor quality 

data is mostly due to poor software implementations, 

system level issues or poor collection pipeline design. 

When the entry level is made sensitive/responsive, 

when something is lacking in data, there will be early 

notification. 
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This will reduce errors in data and thus leads to better 

data availability. On the cloud and in 

telecommunications, network resiliency is getting 

better by the day and the future for this is brighter. 

There are various activities going on to improve 

resilience that will have a ripple effect on data 

availability.

Data storage for the future is the hybrid cloud. The 

cloud computing framework is moving towards 

removing boundaries and making data storage and 

accessibility effective. The use of hard drives and flash 

drives for data storage is becoming less costly, 

better resilient and more agile daily. This progress sets 

the ground for a better data availability.

The future of cost incurred in data availability either 

on premises or in the cloud will be highly affordable in 

the near future. Cloud companies have different 

storage arrangements that make saving cost 

possible. Knowledge is also expanding daily for data 

pipeline management for saving costs. The future for 

data availability is positive and exciting.

CHAPTER 3
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With the convergence of data proliferation and 

advancements in computational power, artificial 

intelligence (AI) has already transformed the world 

around us. However, there is an ever-growing list of 

models leading to harmful outcomes due to their 

increased complexity, lack of interpretability, lack of 

reproducibility, and increased bias. Facial 

analysis algorithms have demonstrated higher rates 

of error for people of color and implementation by 

law enforcement agencies reinforce these disparities 

at every stage of the justice system [1]. Hiring 

practices using natural language processing (NLP) 

to score applicants in the tech industry penalized 

candidates through encoded gender bias, amplifying 

patterns in the existing gender employment gap [2]. 

A predictive algorithm for resource allocation used 

cost of care as a proxy for healthcare needs. The 

output reflected the history of inequality by 

requiring Black patients to be considerably sicker 

than White patients in order to qualify for the same 

level of coverage [3]. Translating theory into 

successful, responsible AI systems is constrained by a 

multitude of real-world factors. The foremost 

consideration is the data foundation upon which 

the models rest. Machine learning models reflect the 

data they are built on, and so a failure to overcome 

the data challenges within the development 

lifecycle can lead to poor performance and even 

poorer results. 

As large-scale datasets become more widely 

available, it’s important to make sure the dataset 

is appropriate to address the questions of interest. 

The dataset should include information on potential 

confounding variables to mitigate bias and increase 

interpretability of the model. Confounders are 

variables that affect both the inputs and outputs of 

the model and can therefore lead to spurious 

correlations between inputs and outputs. Since 

confounders are context-dependent, domain 

knowledge is necessary for identifying the right 

variables to include for modeling.

In addition, the dataset should be large enough and 

diverse enough to avoid making spurious correlations 

and to support the conclusions drawn from the 

models. The larger the dataset, the higher the 

probability that one will find an event of interest even 

if the event is spurious. Rigorous statistical modeling, 

including power calculations, can help reduce the 

rate of such false discoveries. Acquiring a dataset 

with the appropriate sample size will often require 

the aggregation of multiple data sources. Each data 

source has its own potential biases, based on how 

the data was collected and processed. Harmonizing 

the different data sources requires extensive 

characterization and analysis but will ultimately lead 

to less biased and more predictive models.

Over time, datasets will continue to grow and evolve, 

posing a specific challenge to models created on 

older datasets. Data drift refers to changes in the 

data infrastructure and architecture over time, while 

concept drift refers to the change in relationship 

between input and output variables over time. The 

speed and magnitude of both affect model 

performance, with faster and more drastic changes in 

new datasets leading to worse performance. 

Anticipating how these relationships will change and 

periodically retraining the model with updated 

datasets can mitigate both issues. 

Data Roadblocks in ML & AI
Shivam Mathura, Director of Strategy, COTA inc
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Dataset volume describes both the number of 

samples and the number of attributes (or features) 

for each sample. While increasing dataset size and 

complexity are important for making new discoveries, 

they also pose distinct challenges.

As the dataset size (both in terms of sample size and 

feature dimension) increases, the runtime and 

resources needed to train machine learning 

algorithms also increases. Unfortunately, the scaling 

factor is usually not linear, meaning that doubling 

of dataset sample size can require more than twice 

the computational resources. This can render certain 

algorithms ineffective and unusable with large 

datasets, requiring a comprehensive approach to 

data storage and processing and careful model 

considerations in order to begin analysis.

Increases in the feature dimension can also affect 

model performance through the curse of 

dimensionality. With more attributes than samples, 

it becomes quite easy to overfit to the noise in the 

training data and decrease model performance on 

out of sample datasets. In addition, many machine 

learning algorithms are based on measuring 

similarity (or distance) between data samples, which 

is complicated by large feature dimensions. 

Dimension reduction algorithms can help avoid these 

problems by selecting only the most pertinent 

features. Machine learning algorithms can be 

sensitive to class imbalance, an issue that arises in 

datasets with non-uniform distribution of samples 

across classes. Minority classes will be harder to 

classify, leading to decrease in overall model 

performance. The challenge of class imbalance is 

further amplified in large datasets. Therefore, it is 

important to make sure that all data classes are 

represented as equally as possible.

Similarly, the dataset needs to be evaluated for its 

quality. In the context of data quality, completeness 

is the degree to which the dataset includes expected 

values.  The level of completeness required can vary 

by model and should be considered before using the

source as an input. 

In much the same way that the sample size must 

meet the minimum requirements for statistical validity, 

the dataset needs to meet the minimum 

requirement for the availability of features. Virtually all 

data sources will have gaps, but understanding the 

difference between what values are present, what 

values are null, missing, or unusable, and what 

percentage of values is expected can identify 

potential errors in data collection and if steps are 

required to clean or correct them.

Other aspects like the consistency and accuracy of 

the data sources are equally important when it comes 

to data quality and preparation. Consistency refers to 

the ability of the input sources to adhere to the logical 

rules that define them. This includes rules like valid 

values for each attribute, valid relationships between 

attributes, and each feature having the same data 

type or format. Not only should each source follow 

its own internal rules, but the aggregation of sources 

should not create any logical conflicts. 

Accuracy can be complex to assess, as it is meant to 

measure the degree to which the dataset is correct 

or truly models what it is intended to capture. It can 

be quantified by observing the conformity to 

expectations of completeness and consistency, and 

if the source is subject to duplicates, conflicts, or 

invalidity. Accuracy should also be informed by the 

provenance of the data: the origins, the 

transformations, the derivations, the metadata, and 

the complete audit trail from generation to 

destination. A deeper understanding of the data 

lineage and its context within the domain to build a 

good model. 
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As machine learning and artificial intelligence 

becomes more ubiquitous, the tools and techniques 

to overcome these challenges will also advance. 

While there are many important steps to building 

ethical and effective ML/AI solutions, it often 

begins - and ends - with the data.

References: 

[1] How is Face Recognition Surveillance  

Technology Racist?

[2] Amazon scraps secret AI recruiting tool that 

showed bias against women

[3] Dissecting racial bias in an algorithm used to 

manage the health of populations
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In this paper, we discuss the wonders of Artificial 

Intelligence (AI) and the limitations of AI on Enterprise. 

We elaborate this with an example of the latest AI 

model GPT-3, a model that has surprised the world by 

all the wonders it can do. For example, it can replace 

the computer programmers, coders, doctors, typists, 

futurists and industrialists through its capabilities as a 

sole model. But at the same time, we must think of the 

computational cost, hardware/software liabilities and 

the unforeseeable biases that could be created as a 

result of training such high-level models.

In 2001, the futurist Ray Kurzweil said in his article ‘The 

Law of Accelerating Returns’ [1] that technological 

change is exponential. We will not be experiencing 

100 years of progress in the 21st century, instead it will 

be more like 20,000 years of progress. Today we are 

seeing these changes in the IT world. Machine

 intelligence surpassing human intelligence. Recently, 

the launch of GPT-3 (Generative Pre-trained 

Transformer 3) [2] by OpenAI, a company co-founded 

by Elon Musk, has surprised the world. The GTP-3 is 

a computer-based model that uses deep learning to 

produce human-like-text. The GPT-3 can respond to 

any text that a person types into the computer with a 

new piece of text that is appropriate to the 

context. The GPT-3 is the most powerful language 

model ever produced in history. With almost 175 

billion parameters, the GPT-3 model can replace 

human coders, programmers, data analysts, data 

scientists, web developers, human operators, doctors 

like radiologists and many industrialists.

However, it is unreasonable to expect GPT-3 to be 

all good. There will be some limitations on processing 

while using the enterprise Artificial Intelligence.

The GPT-3 works miraculously and comes from using 

an extraordinarily larger model. The cost of GPT-3 

comes with an immense increase in the model 

parameters and the data size that is beyond the 

capacity of normal to high-tech computer systems. 

Even the GPT-3 paper’s core message was less about 

its performance on benchmarks, and more about 

the discovery of solving the highly complex tasks 

that have never been performed before by any other 

model. The impressive text generation by GPT-3 can 

solely be attributed to the massive computational 

power, scale, and the number of resources used for 

training the model. This means, the Enterprises AI 

needs the growing layers of cyberspace to deploy a 

GPT-3 model.

The GPT-3 algorithms also go through massive 

amounts of data to recognize patterns and draw 

conclusions. These models are trained with labeled 

data that rely on scenarios the model will encounter 

in the real world. For example, the doctors must tag 

each x-ray to denote if a tumor is present and what 

type it is. Only after reviewing thousands of x-rays, 

can an AI correctly label new x-rays on its own. 

This collection and labeling of data is an extremely 

time-intensive process for humans.

One should also not expect the GPT-3 to be a 

universal solution. The Artificial Intelligence used in 

this model may be excellent at pattern recognition, 

but one can’t expect it to operate on a higher level 

of consciousness.For example, if we ask the GPT-3 to 

enter someone’s home and make a cup of coffee, this 

includes finding the coffee grinds, locating a mug, 

identifying the coffee machine,

Processing limitations on Enterprise AI - Is 
GPT-3 the ultimate solution?
 
Shaina Raza, PhD Candidate, Advisor Computer Science, Ryerson University, Toronto, Canada
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adding water and hitting the right buttons. This is 

referred to as artificial general intelligence where AI 

makes the leap to simulate human intelligence. 

Another major limitation of GPT-3 is its algorithmic 

bias, which is known to have biases towards gender, 

race, and religion. This arises from biases in training 

exponential amounts of data that reflects the societal 

views and opinions. It further reinforces the fact that 

the GPT-3 is not a standalone intelligent system. Like 

any form of new technology, there can be a significant 

cost of purchase and a need for on-going 

maintenance and repair of GPT-3. The model will also 

require regular upgrades in order to adapt to the 

continually changing business environment. The return 

on investment needs to be carefully considered by a 

company before going ahead and implementing the 

GPT-3 system.

Creativity remains a vital component of a successful 

marketing campaign. The AI generated models can 

make decisions but are not necessarily creative. 

Unlike machines, humans can think and feel, which 

often guides their decision making when it comes to 

being creative. Obviously, the AI can assist in terms 

of helping to determine what the consumer is likely to 

click on - from colour preferences to style and price. 

But when it comes to originality and creative thinking, 

a machine simply cannot compete with the human 

brain. We still need both humans and machines.

AI and ML are evolving technologies. Today’s 

limitations are tomorrow’s successes. The key to 

success is to continue to experiment and find where 

we can add value to the organization. Although we 

should recognize AI’s limitations, we shouldn’t let it 

stand in the way of the revolution. This paper has 

concentrated the limitations of AI to the Enterprise. 

There are some real advantages of AI to the Enterprise 

which we have already mentioned, however, 

ultimately, Artificial Intelligence is only going to 

become more and more efficient and effective.

Keeping ourselves aware of the current limitations of 

AI helps ensure we do not set ourselves up for 

unrealistic expectations.
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Emerging 6G wireless communication networks will 

require cross-cutting developments in mm-wave and 

sub-THz wireless technologies, software defined radio 

(SDR), software defined networks (SDN), AI, and 

machine learning (ML) across all layers of the net-

working protocol stack. 6G systems will be based on 

concepts such as dynamic spectrum access (DSA) 

and cognitive radio (CR) and will enable 

unprecedented capacity and network access, while 

providing the enabling technologies for augmented/

virtual reality (AR/VR), multi-agent robotics, wireless 

IoT, autonomy, and more. The expected explosion in 

network complexity and size of 6G networks will 

necessarily require an unprecedented level of 

real-time inference and autonomous intelligence to 

manage cross-layer decision-making at the 

physical layer and above. Fundamental research on 

next-generation wireless, such as cognitive 

beamforming for spectrum-awareness in 6G 

networks and RF fingerprinting of wireless IoT devices 

will require access to existing state of the art

test-beds such as Colosseum and PAWR, as well 

as the development of entirely new test-beds. This 

chapter explores new and exciting ideas on the 

convergence of AI/ML and mm-wave 6G wireless 

network research towards next-generation data 

networks, robotics, autonomy, wireless IoT, and 

industry 4.0.

Next-Generation Wireless Networks with AI 
and SDN

Over the last few decades, network systems have 

become an indispensable part of our lives, serving 

our basic  and  crucial  needs.   In particular, the 

Internet evolved  from  an  information  service  to  a  

major utility  service  providing  lifeline  services  to  

people,  organizations,  businesses, and governments. 

COVID-19 further accelerated and clinched this 

reality: network systems will continue to grow, 

particularly on the wireless side, and become 

ubiquitous with diverse components in almost every 

domain. This continuous growth of network systems 

in terms of scale and capabilities come with pressing 

challenges on how to manage, control and maintain 

such a huge and complex system of systems without 

compromising its safety, security and efficiency since 

the scale and complexity are beyond the limits of 

manual control. We believe that after being 

managed manually with teams of administrators, 

emerging network systems are at a critical 

conjunction where they will need to develop some 

sort of agency (i.e., automation) to be able to 

self-address many of the above challenges as 

existing approaches outstretch their limits.  Similar to 

all biological systems, network systems also need the 

ability to adapt to continuous changes in regard to 

the way they are used, secured and managed.  If this 

transformation does not occur now, current network 

systems will eventually become overwhelmed and 

under-performing, thus risking the fulfilment of many 

of the lifeline services upon which society depends. 

Fig. 1. AI-based SDN for next-generation wireless 

networks.

AI in 6G Wireless Communication Networks
Kemal Akkaya, Arjuna Madanayake, Udara De Silva, & Sravan Pulipati, Florida Int. University; Josep M. Jornet, Kaushik Chowdhury, Francesco Restuccia, 
& Tommaso Melodia, Northeastern University; Soumyajit Mandal & John Shea, University of Florida; Aditya Dhananjay, Pi Radio; Jay Dawani & Vassil 
Dimitrov, Lemurian Labs.
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Intelligence in SDNs: Advancements in AI and 

machine learning (ML) provide excellent mechanisms 

to tackle these transformational challenges as we 

seek to bring agency and self-decision making to 

next generation wireless network systems that will 

automatically help addressing scalability, 

manageability and security. 5G networks already 

include a service-based architecture in the network 

core that significantly differentiates itself from the 

4G design. This architecture calls for heavy utilization 

of SDN and network function virtualization (NFV) to 

enable flexibility and elasticity targeted for different 

application needs [1, 2]. The upcoming 6G networks 

will take this approach further by supplementing SDN 

and NFV with AI/ML capabilities, resulting in a 

knowledge layer. As seen in Fig. 1, the envisioned 

architecture will bring self-management and self-

security that will take next-generation 6G systems to 

another level. Specifically, the knowledge layer will 

act as  a  centralized  brain  that  can  make  

decisions  by  collecting  data  from  both  the control  

and  data planes managed by SDN.  Data collection 

will be achieved by utilizing an agent-based system 

at  the  data  plane. AI/ML will be integrated within 

every layer of both the hardware and software, 

making this a comprehensive AI-enabled approach 

that spans end-user devices, base-stations, 

radio-access networks, and the core network as is 

detailed in the next sections.

Motivation from the DARPA Spectrum 
Collaboration Challenge 

The RF spectrum is a resource that is shared among 

a diverse set of users that are distributed across 

space, often mobile, and have diverse and often 

time-varying quality-of-service requirements for their 

traffic. Most existing spectrum usage policies follow 

one of two approaches. In the first, a frequency band 

is allocated by a regulatory body to a specific user 

over some geographic area.

This approach often results in inefficiencies because 

the user does not fully occupy the entire band over 

the entire space all the time. In the second approach, 

the spectrum is open to any unlicensed user that 

follows certain power and bandwidth requirements. 

In the US, this is primarily the Industrial, Scientific, and 

Medical (ISM) bands, such as the 2.4 GHz and 5 GHz 

bands that are used for WiFi. This approach, too, 

often results in inefficiencies because users interfere 

with each other and do not coordinate or broker their 

use of the spectrum. This motivates the use of 

spectrum-sharing techniques, in which users work 

together to deliver their traffic over a set of shared 

frequency bands.

Fig. 2. Real-time physics modeling on DARPA  

Colosseum for AI-enabled SDRs. 

The DARPA Spectrum Collaboration Chal-
lenge (SC2)

The AI-based SD Grand Challenge was run by the 

Defense Advanced Research Projects Agency (DARPA) 

from 2016-2019. The SC2 started with 90 teams from 

academia and industry, as well as a few individuals, 

both from the US and around the world, competing to 

win up to $3.5 million in prizes. DARPA describes it as 

“the first-of-its-kind collaborative machine-

learning competition to overcome scarcity in the 

radio frequency (RF) spectrum.” Contributor Shea of 

the University of Florida (UF) was co-lead of Team 

GatorWings, which won the SC2 championship. 
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During the SC2, teams developed intelligent 

communication algorithms and implemented them 

on software-defined radios (SDRs). Teams had to 

work completely independently and were barred 

from exchanging any information about their team’s 

algorithms or strategies. The performance of teams’ 

intelligent radio designs were evaluated in mixed 

cooperative-competitive matches in which the real 

radio transmissions were sent over an emulated 

channel using Colosseum, billed by DARPA as the 

world’s largest channel emulator. As shown in Fig. 2, up 

to 5 teams of 10 radios each would be placed in an 

emulated physical environment, along with other 

scenario radios, such as jammers and incumbents 

that cannot tolerate significant interference. Teams 

could collect performance and spectrum data that 

could be used to train ML algorithms from their radios 

during various scrimmages, preliminary events, and 

special freeplay jobs.

Fig. 3. Snapshot of a visualization generated during 

the SC2 Championship Event. 

In October 2019, the SC2 Championship Event was 

held at Mobile World Congress in Los Angeles.  During 

this event, the final ten teams competed in a wide 

range of radio scenarios with different types of traffic, 

mobility, and incumbents. Fig. 3 shows a snapshot of a 

visualization from the last match of the Championship 

Event. The bottom right shows a terrain map along 

with color-coded and numbered markers indicating 

positions of each node for each of five teams.

In the top right is a spectrogram, which shows the 

radio spectrum over time and how it is being used by 

each of the teams. Finally, on the left are the cumu-

lative scores of the teams, along with a bar graph in-

dicating progress toward a 35k “finish line” score that 

would end the match. SC2 demonstrated that spec-

trum sharing can be achieved among teams that 

utilize diverse radio algorithms and spectrum-access 

strategies and that handle diverse traffic. In fact, in 

the SC2 Championship Event, teams demonstrat-

ed the capability to drastically increase spectrum 

efficiency through multiple teams using the same 

spectrum at the same time through careful allocation 

across transmitter-receiver pairs and use of robust 

communication schemes.

Implementation of Intelligent Radio 
Algorithms

Building an intelligent radio network requires a 

diverse set of talents and skills. Many radio algorithms 

are inherently real-time in nature, and robust 

algorithms that rely on advanced signal processing 

and error-control coding schemes are very 

computationally intensive. In addition, many ML 

algorithms are also computationally intensive, 

especially during the training phase. Thus, teams 

working in this field must be skillful in implementing 

problems across FPGAs, graphics processing units 

(GPUs), and general-purpose processors (GPPs). For 

instance, the communication algorithms in Team 

GatorWings’ SC2 radio were implemented across an 

FPGA and GPP, and also included a highly-

parallelized Viterbi decoder on the GPU.  A block 

diagram illustrating the fundamental structure of 

Team GatorWings’ SC2 radio and the assignment to 

processing resources is shown in Fig. 4.

Intelligent SDR Platform: ML algorithms leveraged the 

use of a GPU, especially during the training phase. 

The FPGA was integrated onto National Instruments
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USRP X310 radios that were used in the competition, 

and low-level signal processing including frequency, 

mixing, filtering, up/downsampling, and spectrum 

sensing was implemented using a RF Network on Chip 

(RFNoC) framework. The remaining communication 

stack (such as equalization, modulation, coding, and 

resource allocation) and online ML algorithms were 

almost fully-custom and implemented in 

multi-threaded C++.  ML algorithms for optimization 

of spectrum sharing used PyTorch, and TensorFlow 

was used for spectrum understanding. Future work on 

AI-enabled wireless will require similar 

interdisciplinary teams with a diversity of software and 

hardware expertise.

Fig. 4. Structure of Team GatorWings’ SC2 Radio and 

Resource Assignment. 

Frontier Communications at MM-Wave and 
THZ

Expanding Spectrum: Irrespective of the 

development of novel spectrum sharing methods, the 

need to provide higher data rates to an ever-

increasing number of wirelessly connected devices will 

continue to motivate the exploration of higher

 frequency bands for communication. Currently, in 

5G networks, the lower-end of the millimeter-wave 

spectrum (under 100 GHz) has been adopted. Moving 

forward, in 6G systems, frequencies above 100 GHz 

will enter the game [3, 4], not only to support 

data-rates in excess of 1 Terabit-per-second (Tbps) in 

dense networks, but also as the enabler of innovative 

sensing systems.

The very large bandwidth available at 

terahertz-band frequencies (from 300 GHz to 10 THz), 

which comes in the form of multiple hundreds of GHz-

wide windows, only interrupted by the presence of 

sharp water absorption lines, provides RF 

communication systems with opportunities usually 

only available to optical systems. The short 

wavelengths (less than 1 millimeter) and the 

meaningful photon energy of THz signals enable both 

precise localization and non-damaging 

material identification. Moreover, communications 

and sensing are not two separate processes, but 

benefit from being integrated: after all, the topology 

of the shared medium, including the presence of 

different types of obstacles and the composition of 

the air itself, ultimately determines the best 

communication and networking strategies to follow, 

thus making THz communications a new playing field 

for AI algorithms and data-driven ML approaches.

The resulting applications of the millimeter-wave and 

terahertz-band spectrum are plenty. On the ground, 

ultra-broadband point-to-point links can serve as 

backhaul links with capacities comparable to that 

of wired optical fiber systems but at a fraction of the 

cost, bringing the benefits of 6G to rural areas or in 

emergency zones (e.g., after an Earthquake or 

tsunami). Similarly, joint communications and sensing 

can be utilized to enable ultra-low latency 

high-capacity communication and sensing in 

networks of autonomous vehicle networks. Up in the 

sky, the opportunities are even larger, because 

blocking obstacles are less likely and, moreover, the 

lower precipitable water content at higher altitudes 

leads to even larger channel bandwidths. Large 

swarms of unmanned autonomous systems, 

simultaneously collecting and sharing hyper-spectral 

data for (literally) in-the-cloud data processing are 

not out of the realm of possibilities.
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Networks of autonomous satellites (i.e., multi-agent 

systems) with terahertz radios in Earth orbit or even 

around the moon, Mars, or Venus, can simultaneously 

extract scientific data while serving as a 6G 

space-borne communication infrastructure [5].

Intelligent Spectrum: AI will play a key role across the 

system, from hardware to software and at the 

intersection of the two. For example, AI can be utilized 

to learn and compensate for the highly non-linear 

responses of the transmitter and receiver, which result 

from the frequency multiplication and amplification 

chains needed to generate terahertz signals with 

meaningful power. Beyond that, AI can be leveraged 

to design new robust and secure communications 

strategies (e.g., waveforms, modulation and coding 

techniques) that exploit such non-linear behavior. 

Similarly, AI will be needed to efficiently estimate 

the communication channel and compensate for it. 

Among others, due to the very small wavelength of 

terahertz frequency signals, any minor (e.g., millimet-

ric) change in the network topology or propagation 

medium can lead to major changes in the channel 

impulse response. An AI-driven joint 

communication and sensing framework for 

channel estimation and equalization becomes a must 

to enable reliable communications. Ultimately, AI can 

also be utilized to control the many knobs (learnable 

parameters) related to hardware by implementing 

ML algorithms within millimeter-wave and terahertz 

transceivers.

AI for Wireless Transceivers

Cognitive Radio: Traditional spectrum licensing 

models cannot satisfy the exponentially-growing 

demands for wireless spectrum. However, moving to 

dynamic sharing models that allow additional users 

to exploit the unused spatio-temporal regions (“white 

spaces”’) within existing bands, such as those 

demonstrated during SC2, is intrinsically challenging 

because spectrum access patterns are stochastic

and fluctuate on multiple timescales. Moreover, 

existing spectrum sensors cannot monitor the 

spatio-temporal domain on such timescales due to 

the very high data rates (e.g., 100 Gbps for 

Nyquist-rate digitization of a single 5 GHz bandwidth 

beam at 10-bit resolution), resulting in incomplete 

spectral awareness. These awareness gaps also result 

in security vulnerabilities that can be exploited by 

malicious users. Addressing these spectrum usage 

challenges requires a new generation of DSA 

algorithms that can improve effective channel 

capacity, link latency, and user-perceived data 

throughput, thus enabling rapid growth in wireless 

applications such as autonomous vehicles, AR/VR, 

and industrial automation.

Fig. 5. (a) Conventional, and (b) AI-Enabled  

Wireless Transceiver Architectures. 

Realizing DSA algorithms suffer from two key 

challenges. Firstly, while ML is promising for improving 

DSA, existing ML-based efforts are limited to 

software-driven approaches that do not consider 

relevant RF front-end properties (bandwidth, 

tunability, linearity, noise, and dynamic range). 

Secondly, existing efforts are focused on the “legacy” 

sub-6 GHz bands where spectral crowding is 

currently a major problem, and do not consider the 

unique properties of the emerging mm-wave and 

sub-THz bands where most future wireless 

developments will occur. AI-enabled mm-wave 

wireless transceivers can fill this gap by closely 
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integrating AI algorithms with programmable RF 

front-ends to enable spectrum awareness and DSA. 

The ML-based spectrum monitoring and analysis 

capabilities of such  cognitive radio (CR) receivers 

enables fine-grained spatio-temporal DSA 

algorithms that increase channel capacity and 

wireless data rates within both licensed and 

unlicensed mm-wave bands. Such capabilities also 

improve spectral situational awareness for detecting 

anomalous or malicious spectrum usage.  Fig. 5 

compares the architectures of conventional and 

AI-enabled transceivers. 

Spectral Attention: Ultra-broadband spectrum 

monitoring (consisting of feature extraction 

followed by ML, as shown in Fig. 5(b)) is required for 

spatio-temporal DSA. The ML algorithms can use a 

selective attention mechanism (analogous to 

similar concepts in natural language processing and 

computer vision) to address the “fire hose” challenge 

of how to effectively process large volumes of 3D 

spectrum data (varying in frequency, direction, and 

time) to detect useful white spaces. The chosen DSA 

parameters (operating frequencies, directions, time 

slots, modulation types, and transmit power levels) are 

then used to program the receiver front-end, which 

includes reconfigurable components such as tunable 

antennas, low-noise amplifiers (LNAs), and filters. This 

closed-loop adaptation process enables “hardware-

in-the-loop” self-tuning and self-healing to achieve 

high-level goals, such as autonomously maximizing 

the received signal-to-noise and interference ratio 

(SINR) and thus the channel capacity.

Adaptive Circuits: A key challenge for AI-enabled 

receivers is the identification of RF signals with 

unknown modulation, center frequency, and 

bandwidth. This is critical in both sub-6 GHz and 

mm-wave bands due to the presence of 

undesired interferers (blockers) close to the weak 

signals of interest. This challenge can be addressed 

using programmable RF front-ends that maximize the

under algorithmic control. SINR of the receiver for par-

ticular frequency bands under algorithmic control. For 

example, a programmable passive RF band-pass fil-

ter (BPF) before the LNA can provide adaptive blocker 

rejection under the control of a deep belief network 

(DBN)-based modulation 

recognition (MR) algorithm [6]. Spectro-temporal RF 

features can then be efficiently extracted from the 

selected bands by biologically-inspired real-time 

spectrum analyzers (known as “RF cochleas”) [7], as 

shown in Figs. 5(b) and 6. Low-complexity 

space-time array processing algorithms can then 

implement spectral awareness and attention based 

on the extracted features. Finally, ML-enabled signal 

detection and identification algorithms select desired 

signals from the attended regions while rejecting 

unwanted ones (such as blockers).

 

 

Fig. 6.AI-driven selective attention mechanism  

using an “RF Cochlea” Spectrum Analyzer.

Adaptive Computing: AI-enabled wireless 

transceivers require real-time computing platforms. A 

key requirement for such real-time systems is 

consistent and low latency for handling high-

data-rate I/Q samples - either those received from 

high speed analog-to-digital converters (ADCs) or 

those being transmitted to digital-to-analog 

converters (DACs). Emerging applications require 

reconfigurable hardware like FPGAs to deploy AI 
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algorithms on these samples at 6G bandwidths. 

Xilinx RF SoCs are promising for such applications 

since they integrate parallel high-speed ADCs and 

DACs with a fully-reconfigurable FPGA fabric and 

ARM Cortex processors (see Fig. 7). These devices can 

efficiently process high-speed data streams by using 

a combination of custom ML hardware accelerators 

and software code running on the ARM cores, thus 

allowing compute-intensive AI on the edge.

Fig 7. Block Diagram of an Xilinx RF SoC-based 

Reconfigurable Computing Platform for AI-enabled 

Wireless Transceivers. 

Compute acceleration using Xilinx’s Vitis AI flow 

enables a new RF SoC-based software solution for 

running 6G AI algorithms in real-time. Acceleration is 

introduced by the built-in deep learning processing 

unit (DPU), which can perform multiply-and-accumu-

lation (MAC) and non-linear activation functions in 

parallel. This accelerated environment is suitable for 

superfast ML inference at low latency, as required for 

AI-enabled mm-wave and sub-THz transceivers.

Spectrum Sharing by Design: Today, spectrum 

sharing operators must rely on cloud-based 

spectrum access systems (SAS), which statically 

determine if the spectrum is available for a specific 

time period over a geographical region. However,  it 

is easy to see that this centralized manual approach 

lacks scalability, and it does not allow for fine-

grained real-time spectrum management. In other 

words, today spectrum sharing is not completely 

efficient, for both operators and spectrum owners 

alike. Conversely, a scalable and effective solution 

would be to let wireless devices opportunistically

discover which spectrum sub-bands are currently 

available among ongoing licensed transmissions. 

This approach would severely boost spectrum usage 

without the need of central coordination. In other 

words, we need a closed-loop approach where both 

the transmitter’s spectrum access and the receiver’s 

waveform demodulation strategies are self-optimized 

in real time for maximum performance and minimum 

interference with licensed users. We need to enable 

the transition of spectrum sharing from a nice-to-

have feature that few devices can perform, to a 

widespread technology that IoT  devices will utilize 

“by design,” as an integral part of their operations. 

However, achieving this goal is extremely daunting 

due to the strict real-time constraints of wireless 

domains, the resource-constrained nature of wireless 

devices, and the unpredictable nature of the wireless 

spectrum. The proposed AI-enabled wireless 

transceivers can provide a solution to these problems.

Fig. 8. Block Diagram of a Spectrum-Sharing-By- 

Design Wireless System. 

Figure 8 shows the key operations of a spec-

trum-sharing-by-design wireless system that utilizes 

the proposed AI-enabled transceiver architecture. 

The approach is data-driven in nature, and leverages 

feedback from the receiver to continuously adjust the 

transmitter’s strategy according to the ongoing 

performance. First, the IoT transmitter performs 

spectrum sensing to learn not only the current 

location of spectrum “holes,” but also learn to 

automatically associate a given spectrum hole with a 

set of waveform parameters, such as the modulation
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/coding scheme (MCS) and bandwidth, so as to 

maximize spectrum utilization in a variety of channel 

conditions. The 

receiver, on the other hand, will  (i) identify the 

relevant transmission among other concurrent 

licensed waveforms; and (ii) learn to identify the 

current transmission’s parameters and demodulate 

the transmission accordingly. The receiver 

performance -- in terms of throughput, bit error rate 

(BER) or similar -- will be sent as feedback to improve 

the performance of the transmitter’s algorithms.

AI for Radio Identification and 
Hardware-Level Security

As has already been noted, today’s wireless spectrum 

is exceptionally crowded. According to the latest 

Ericsson’s mobility report, there are now 5.7 billion 

mobile broadband subscriptions worldwide, 

generating more than 130 exabytes per month of 

wireless traffic. In addition to the clear commercial  

need, 5G and IoT have been identified as critical 

technologies for national security. The recent report 

“The Global Innovation Sweepstakes: A Quest to 

Win The Future,” by the Atlantic Council’s Scowcroft 

Center for Strategy and Security, identified 5G/IoT 

as one of a few cutting-edge technologies that are 

shaping an unprecedented technological revolution 

that will have far-reaching social, economic, and 

geostrategic consequences.

Radio Frequency ML Systems: Traditional spectrum 

sharing approaches based on fixed frequency 

allocations have led to fracturing and poor utilization. 

Thus, the wireless community has heavily invested in 

various DSA modes, although economic, regulatory, 

and enforcement issues have resulted in slow traction 

towards actual deployment. Specifically 

considering the target wireless application areas that 

will be radically transformed by city-scale 

deployment of small form-factor IoT devices, DSA 

does not explicitly involve considerations of security

or energy savings. Finally, traditional authentication 

mechanisms that rely heavily on cryptography-based 

algorithms and protocols are not well-suited to the 

IoT, as they are usually too computationally expensive 

to be run on tiny, energy-constrained devices. 

Fig. 9. Typical transceiver chain with various sources of 

RF impairments. 

Clearly, to realize the promise of IoT, new clean-slate 

approaches are needed to achieve efficient spec-

trum utilization by (i) reducing transmission overhead 

in a way that is independent of specific standards; 

(ii) enable device authentication using immutable 

characteristics of a device, beyond cryptograph-

ic energy-hungry techniques, and (iii) lessen, if not 

eliminate, control signaling. In our vision, devices will 

learn small-scale hardware-level imperfections of 

their neighbors, which typically manifests in phase 

noise, I/Q imbalance, frequency and sampling offset, 

and harmonic distortions [8], to identify and classify 

specific transmitters, protocols and protocol-settings. 

Because of these unique impairments, a number of 

wireless devices operating on the same baseband 

signal will necessarily transmit two slightly different 

RF waveforms. We can then obtain a “fingerprint” of 

the wireless device by estimating the RF impairments 

on the received waveform and associating them to a 

given device [9]. 
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We show in Fig. 9 a block diagram of the transceiv-

er chain and the main causes for shifts in a 16-QAM 

constellation, with the red and black points showing 

expected and observed complex-valued I/Q 

samples. These shifts impart a unique fingerprint to a 

given device and signal. The power of ML, specifically 

convolutional neural networks (CNNs), can be used 

to identify devices and modulation types based on 

these fingerprints. Furthermore, this capability can be 

integrated into wireless protocol design to increase 

spectrum efficiency in ways that are resilient to 

adversarial action. 

Conceptually, the approach is simple: CNN-based 

radio fingerprinting is used to eliminate device-

identifying MAC ID fields contained in the head-

er. CNN architectures suitable for implementation 

within embedded systems further reduce the need 

for periodic control signaling by the transmitter, e.g., 

to indicate the choice of modulation. Deep learning  

goes beyond  “shallow” neural networks by 

autonomously extracting extremely complex 

features thanks to the very large number of 

parameters (typically 106 or more). Thus, deep 

neural networks can analyze unprocessed I/Q 

samples without the need of application-specific 

and computational-expensive feature extraction 

and selection algorithms [10]. Earlier work has 

explored the limits of RF fingerprinting using ML by 

analyzing a dataset of 400 GB of signal traces from 

over 10,000 radio transmitters as part of a 

DARPA-funded effort. These transmitters used 

off-the-shelf (COTS) 802.11b/g/n WiFi, and Automatic 

Dependent Surveillance-Broadcast (ADS-B) 

standards. This concept has also been used to 

demonstrate fingerprinting of 5G base stations 

deployed in the POWDER PAWR community-scale 

testbed in Salt Lake City, UT [11], thus motivating a 

push towards the concept of “shared infrastructure 

as a resource” for UAVs [12], a segment that several 

industry estimates predict to grow to $17 Billion by 

2024 [13]. 

Deep learning has many other applications in RF 

identification, for example detection and 

automated classification of fully-autonomous drones 

using micro-doppler radar signatures [14,15].

AI for Spectrum Management 

There is still a lot of work to do to improve the 

efficiency of spectrum sharing and to make it more 

practical for use in commercial and government 

systems. Optimizing the use of the radio spectrum 

across users, time, frequency, and space results in 

high-dimensional, distributed, and non-convex 

optimization problems. While conventional ap-

proaches break down under these conditions, ML 

techniques may offer viable approaches. From a 

single-team perspective, they can be modeled as 

reinforcement learning (RL) problems, but the

 problems are moreappropriately modeled as 

stochastic games or multi-agent RL (MARL) problems, 

for which the scientific literature and commercial 

developments are still quite limited. Adding in the 

effect of multiple users/teams significantly 

increases the dimensionality of the problem, which 

makes collecting enough training data problematic.

AI in Spectrum Sharing: 

For users to accept the use of ML solutions to these 

problems, we require mechanisms to ensure that the 

ML solutions offer better performance than 

conventional approaches, offer reasonable actions in 

the presence of new inputs, and are secure against 

manipulation and hostile attacks. One of the key 

developments of SC2 was the use of an interchange 

language, developed by the teams, that allowed the 

intelligent radio networks to exchange information 

that would enable spectrum sharing. For SC2, this 

information included GPS coordinates of radios, 

spectrum usage plans, and performance measures.
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processing hardware infrastructure that will be 

leveraged in the upcoming OpenBeam standard. 

Fig. 10. Colosseum architecture, showing the user (or 

competitor) X310 USRPs and the additional USRPs in 

the massive channel emulator (MCHEM).

Accelerating Wave Propagation: Colosseum serves 

as both a development and test environment for 

researchers, originally conceived to test AI-

enabled radio design ability to autonomously 

manage the spectrum with the following features: (i) 

Large-scale: Colosseum can connect 128 SDRs (each 

with two daughterboards/antennas giving a total 

of 256 transmit chains) in a realistic RF environment 

mimicking real world multipath. Furthermore, each 

user/competitor SDR host can access a dedicated 

NVIDIA K40m GPU. Each ATCA-3671 in the channel 

emulator features four user-programmable Virtex-7 

690T FPGAs, giving a total of 64 such FPGAs, which 

can be utilized for realizing massive MIMO. (ii) 

Full-mesh: Colosseum is constructed as a “full-mesh,” 

such that every radio is able to hear every other radio 

through a unique RF channel, as well as being 

connected to a shared 10G Ethernet plane via 18 

switches. (iii) Wideband: Colosseum can emulate the 

wireless interactions across a bandwidth of 80MHz 

each with 2 UBX daughterboards. (iv) 

Neighborhood-sized: Colosseum is able to model an 

area of a neighborhood–approximately 1 sq. km.

Thus, Colosseum is naturally suited for repeatable, 

reliable testing of AI-enabled massive-MIMO 

technology and other distributed antenna systems 

suitable for future 6G deployments. 
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In addition, performance metrics were determined by 

DARPA, and the ultimate match scores were 

created according to DARPA’s metrics and under 

DARPA’s control. Future commercialization will require 

new approaches that enable information 

interchange among users, that protect the privacy of 

the information exchanged, and the incentivize users 

to provide correct information. Working on applying 

ML to spectrum sharing problems currently requires a 

lot of domain-specific knowledge, so new 

approaches are needed to expose the 

fundamental resource allocation problems in a way 

that they can be worked on by the broader 

community of ML researchers. The use of new 

ML-based spectrum sharing techniques will require 

forward thinking by regulatory bodies, industry, 

academics, and standards bodies.

AI for Software Defined Radio (SDR):

The use of physics-based simulation models for 

training AI algorithms is a crucial component of 6G 

wireless systems. Colosseum is currently the world’s 

largest (256x256) RF-Channel emulator for 

cloud-based RF research and development, and 

consists of two overarching constituent components: 

(i)  a pool of 128 SDR resources, which defines a 

common platform upon which to build radio 

experiments; and (ii) a massive channel emulator 

(MCHEM) with 128 additional SDRs that emulate the 

interactions of radio waves in the physical world with 

sufficient veracity so that from any one radio’s 

perspective, it appears to be operating in an 

open-air environment (see Fig.  10).  The radio 

resource pool consists of off-the-shelf Ettus Research 

USRP X310 SDRs mated with high performance rack 

servers. There are no channel emulators currently in 

the market capable of supporting the computation 

and bandwidth needed to compute the interactions 

of hundreds of radios in real-time. As such, 

Colosseum has been custom designed and built 

using an extensive and dedicated GPU and FPGA 
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The 128 SDRs can be synchronized for phase-

coherent operation using 19 hierarchically arranged 

clock distribution systems. 

Next-Generation 6G Wireless Testbeds:

6G Testbeds for Fast Computing: While Colosseum is 

a great shared resource for testing 6G deployments, 

it does not replace the need for low-cost wireless 

test-beds that can be deployed by individual re-

search groups. There have been many efforts from 

industry and academia towards creating affordable 

SDRs that enable 6G experimentation for the re-

search community.  Of these, a notable example from 

industry has been launched by Pi-Radio, a start-up 

funded by the US National Science Foundation (NSF) 

SBIR/STTR programs. The Pi-Radio SDR features a 

fully-digital 60 GHz transceiver (Fig. 11) that allows the 

radio to beamform in several directions 

simultaneously. This system operates in the 

unlicensed V-band (57-64 GHz), and has 4 

independent channels. The Xilinx RF SoC-based 

ZCU111 board is the chosen baseband subsystem for 

this SDR, thus allowing ample compute capacity for 

wireless algorithms as well as for running ML and AI 

code using low-level languages (such as C). Apart 

from the FPGA and ARM cores, this powerful RF SoC 

also features soft-decision forward error correction 

(SD-FEC) blocks in hard silicon. The system operates 

over 2 GHz of real-time bandwidth. Critically, the 

ZCU111 can also be interfaced with reprogrammable 

AI/ML accelerators (such as the Xilinx Versal ACAP 

system) through fiber-optic links with throughputs on 

the order of hundreds of gigabits per second and 

sub-microsecond latency. We believe that the Pi 

Radio SDR offers entry-level experimentation 

capabilities to emerging AI- and ML-enabled 6G 

systems operating in the 60 GHz band.

Fig. 11. Pi Radio 60 GHz array SDR for 6G experimen-

tation, consisting of 4 transmit antennas, 4 receive 

antennas, and Xilinx ZCU-111 RF SoC compute plat-

form for SDR and ML applications.
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Whilst we should not let the limitations noted 

previously stand in the way of what many consider a 

pending AI revolution, both understanding and 

communicating areas in which restrictions exist can 

ensure realistic timelines and expectations for AI to be 

integrated into everyday life. It should be noted that, 

prior to the injection of data, high-performance data 

processing pipelines must be in place, as the injection 

of high-quality data into a less than effective engine 

would only slow the move to market in tech organ-

isations. As discussed, the main limitations in regard 

to data, are availability, cost, privacy, ethics, storage 

and quality. Knowing where to source data is not an 

easy task, this is, in fact, the most common challenge 

to overcome in general. Often organizations use data 

mining companies for this which creates the hurdle of 

cost but also then creates the possible avenue of 

artificial data. 

Privacy and the ethical implications should also be a 

key consideration for every organization. Good 

quality data can sometimes come at a cost, 

however, the privacy of individuals is imperative. Whilst 

there are currently no ethical guidelines blanketing the 

whole of AI, it must be in the forefront of 

company values to acknowledge such issues as 

gender bias in data, ethnicity bias and public 

manipulation. Data compatibility is also another 

common challenge, with variations in format, platform 

and application. For example, in legacy data, which 

requires a strict format and environment.

It must also be recognized that with development in 

capabilities, comes the need for a variation in data 

collection. With the advancement of facial recogni-

tion, for example, there needs to be a huge degree of 

data, accuracy and data labelling, which would need 

to be done at an incredibly fast rate.

Through this, however, we will see developments of 

libraries to deal with preprocessing of text and 

image, amongst others, in each individual field. Over 

time, it then becomes possible that the preprocessing 

stage for specific data types becomes automated by 

standard industry practices. Following on from this, it is 

hoped that these libraries will be replaced with 

automated data format conversion, making data 

highly available and accessible to all, regardless of 

budget or similar restrictions. 

Therefore, data limitations play a critical role on how 

the whole field of Data Science evolves and it is by 

overcoming these challenges that important 

advances are made.

Concluding Remarks

RE•WORK 2021 | WHITEPAPERConcluding Remarks 

We are in the midst of technological conver-
gences that will disrupt industries and provide 

new industry opportunities.” 

-Mark Wright, GSI Technology
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Thank you to the whitepaper sponsor, GSI Technology

Founded in 1995, GSI Technology, Inc. is a leading 

provider of SRAM semiconductor memory solutions. 

The Company recently launched radiation-hardened 

memory products for extreme environments and the 

Gemini® APU, a memory-centric associative 

processing unit designed to deliver performance 

advantages for diverse AI applications. The Gemini 

APU’s architecture features parallel data processing 

with two million-bit processors per chip. The massive 

in-memory processing reduces computation time from 

minutes to milliseconds, even nanoseconds. Gemini 

excels at large (billion item) database search 

applications, like facial recognition, drug discovery, 

Elasticsearch, and object detection. Gemini’s scalable 

format, small footprint and low power consumption, 

make it an ideal solution for edge applications where 

rapid, accurate responses are critical.

Further reading: 

Scalable Semantic Vector Search with Elasticsearch

Concluding Remarks & Additional Reading

Additional
Reading

https://videos.re-work.co/podcast
https://videos.re-work.co/white-papers
https://videos.re-work.co/
https://blog.re-work.co/
https://s3.amazonaws.com/re-work-production/future_events_pdfs/1/original.pdf?1601312802
https://medium.com/gsi-technology/scalable-semantic-vector-search-with-elasticsearch-e79f9145ba8e



