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Analog Computing

• Analog computers (ACs)were theprimarymethodof computation in 1930s - 1940s [1].
In 1948, the Reeves instrument corporation (RICO) became the first company to
market a complete general-purpose analog computer [2, 3].

• The invention of digital computers followed by transistor scaling surpassed analog
computing over the last few decades [1, 4].

• However, digital computing hardware and algorithms are no longer improving ex-
ponentially as Moore’s law slows down [5]. This has led to the exploration of alter-
native technologies.
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Analog Computer for Machine Learning

• Analog circuits can exploit the physics of transistors in implementing
computational primitives for DNNs [6–8].

• Analog computing allows the implementation of efficient vector-matrix
multiplications (VMMs).

• Weight values of the matrix can be stored as conductance values of the
crossbar array.

• In-memory computing finds applications in machine learning.
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State of the Art Analog Computers
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Analog Computer for Solving Partial Differential
Equations (PDEs)

Analog Computing Research

• Explores analog computing concepts, using integrated circuits (IC) technologies, to
obtain additional performance from IC platforms.

• Analog computer (AC) is not a general solution to the slowing of Moore’s law.

• ACs are a promising for better computational performance in specialized cases.

• ACs find applications across multiple verticals including AI/ML, and scientific com-
puting such as electromagnetic and plasma physics simulations.

Analog Computers for Solving PDEs

• The solutions of PDEs are continuous in time.
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Analog Computer for Solving PDEs

• The proposed analog CMOS solver provides a software-reconfigurable general pur-
pose architecture for solving coupled PDEs.

• Boundary conditions, excitations (inputs), computed results (outputs), reconfigura-
tion commands, and calibration signals need to be provided from a series of FPGA
boards and ADC/DAC channels.
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Continuous-time Algorithms for Solving Maxwell’s
Equations

Two methods to design analog accelerators for solving electromagnetic equations
have been investigated [9].

1 Continuous time in Laplace domain (CTLD) method: The spatial domain partial
derivatives are approximated using discrete finite differences, while applying the
Laplace transform (LT) along the time dimension [10–13].

2 All-pass delay approximation (APDA) method: The discrete time-difference opera-
tors in the standard finite-difference time-domain (FDTD) method (Yee algorithm)
are replaced using a continuous-time delay operator (of duration τ ), which can be
realized efficiently on analog CMOS technology as an active-circuit based analog

all-pass filter ϕ(s) =
(

1−sτ/2M
1+sτ/2M

)M
≈ exp(−sτ) ,M ∈ Z+ [14–19].
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1-D Analog Maxwell’s Equations

Maxwell’s Equations

Maxwell’s equations in an isotropic source-free region of space can be expressed
as [20, 21]

∇× E = −µ∂H
∂t

,

∇×H = ϵ
∂E
∂t
,

(1)

whereE ≡ (Ex,Ey,Ez) andH ≡ (Hx,Hy,Hz) .

For 1-D, the TM mode electromagnetic fields are described by

∂Ez

∂t
=

1

ϵ

∂Hy

∂x
,

∂Hy

∂t
=

1

µ

∂Ez

∂x
,

(2)

1-D wave equation can be derived as,
1

c2
∂2Ez
∂2t

=
∂2Ez
∂2x

, c =
1

√
µϵ

(3)
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Continuous-time in Laplace Domain (CTLD)
Method

1-D Wave Equation

The function Ez (x, t) provides the electric field in-
tensity of a propagating wave at position x and time
t. Then, Ez (x, t) satisfies the PDE [20, 21]

1

c2
∂2Ez (x, t)

∂t2
=
∂2Ez (x, t)

∂x2
, (4)

where c is the wave speed.

Consider a spatial domain 0 ≤ x ≤ L, which is discretized intoN + 1 spatial points,
where∆x = L

N .
Step 1: Approximate the spatial domain partial derivatives using finite differences

∂2Ez (x, t)
∂x2

∣∣∣∣
x=i∆x

≈ Ez (i− 1, t)− 2Ez (i, t) + Ez (i+ 1, t)
∆x2

(5)
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Analog Wave Equation Solver: CTLD Method

Thus, the resulting expression is

1

c2
∂2Ez (i, t)

∂t2
≈ Ez (i− 1, t)− 2Ez (i, t) + Ez (i+ 1, t)

∆x2
(6)

Step 2: Apply the Laplace transform along time [12, 13, 22].

1

c2
s2Ēz (i, s)− sF(i)− G(i) =

Ēz (i− 1, s)− 2Ēz (i, s) + Ēz (i+ 1, s)
∆x2

(7)

Here, F(i) andG(i) define the initial conditions of the system.

For zero initial conditions, the mixed domain update equation can be
obtained as

Ēz (i, s) =
Ēz (i+ 1, s) + Ēz (i− 1, s)

2 (As2 + 1)
, (8)

where A = ∆x2

2c2 (for internal spatial points).
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Analog Wave Equation Solver: CTLD Method

Ēz (i, s) =
Ēz (i+ 1, s) + Ēz (i− 1, s)

2 (As2 + 1)
,

• The electric field intensity is represented using voltages.

• Scaling and summing operations can be realized op-amp circuits.

• The 1
As2+1 operation can be implemented using an LC circuit.

• The continuous-time solution over the whole spatial domain is computed by inter-
connecting the IMs in a systolic array architecture.
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Analog Wave Equation Solver: CTLD Method

• The continuous-time solution over the whole spatial domain is computed by inter-
connecting the IMs in a systolic array architecture.
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APDAMethod for Solving Wave Equation
• Step 1: Approximate the spatial derivatives using finite differences.

• Step 2: In contrast to CTLD method, time domain partial derivatives are approxi-
mated using finite differences, while keeping the time variable (τ ) continuous

∂2Ez (i, t)
∂t2

≈ Ez (i, t)− 2Ez (i, t− τ) + Ez (i, t− 2τ)

τ2
, (9)

• Thus, the wave equation can be expressed as

Ez (i, t)− 2Ez (i, t− τ) + Ez (i, t− 2τ)

(cτ)2
=

Ez (i− 1, t− τ)− 2Ez (i, t− τ) + Ez (i+ 1, t− τ)

∆x2

(10)

• Step 3: Application of the Laplace transform along the time dimension (with zero
initial conditions) leads to [14–19]

Ēz (i, s) = K2
[
Ēz (i+ 1, s) + Ēz (i− 1, s)

]
e−sτ

+ 2
(
1− K2

)
Ēz (i, s) e−sτ − Ēz (i, s) e−2sτ ,

(11)

where K = cτ
∆x ≤ 1.
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APDAMethod for Solving Wave Equation
• Equation (11) can be implemented using the below circuit.

• Summing and scaling operations are realized using op-amps.
• The continuous-time delay operator e−sτ is approximated using an analog all-pass
filter, which has an approximate s-domain transfer function e−sτ , where τ is the
group delay of the all-pass filter.

• Replace thedigital delays (z−1
t in the z-domain transfer function) in the FDTDmethod

using analog all-pass filters.
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Comparative Analysis of the Analog Wave Equation
Solver

• In order to quantify howmuch our continuous-time solution deviates from the stan-
dard FDTD solution, themean squared difference (MSD) between the two solutions
and the noise energy to signal energy ratio γ (in dB) have been calculated.

• An FDTD-based wave equation solver is implemented using MATLAB.
• The MSDi for the electric field solution is defined as

MSDi =
1

Nt

Nt−1∑
n=0

[EF (i,n∆T)− EA (i, t)]
2
, (12)

where EF (i,n∆T) and EA (i, t) are the solutions of the FDTD and the proposed
analog solvers, respectively (t = n∆T).

• The γi is expressed as

γi = 10 log10

Nt−1∑
n=0

[EF (i,n∆T)− EA (i, t)]
2

Nt−1∑
n=0

EF (i,n∆T)
2

. (13)
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Comparative Analysis of the Analog Wave Equation
Solver
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Top-level Block Diagram of the Analog Computer
for Solving Wave Equation
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CMOS Design of the 1-D Wave Equation Solver
• The circuit designs employed the TSMC analog CMOS library with the 0.18 microm-
eter process. Cadence integrated circuit design software is used to design the pro-
posed AC.

• The analog bandwidth Fcompute for CT operations of the AC is set to 50 MHz. This
results a minimum wavelength of λmin = c

Fcompute
.

• The spatial step size is set to∆x = λmin
8 .

• τ is selected as 1.6 ns to satisfy the stability condition τ ≤ ∆x
c = 2.5 ns. Thus, the

equivalent temporal update rate in the AC is 625 MHz.

20/51



CMOS All-pass Filter Design

• The Laplace domain representations e−sτ in the update equations are approxi-

mated as e−sτ ≈
[
1− sτ

2M
1+ sτ

2M

]M
, and is realized using a cascade ofM first-order all-

pass filters.
• Typically,M = 3 is sufficient for approximation of τ [19].
• The complete transfer function of the system can be obtained as

Vout(s)
Vin(s)

= ϕ(s) =
(
1− RCs
1 + RCs

)3

=

(
1− jωτ

6

1 + jωτ
6

)3

, (14)

The group delay of the all-pass filter is τ = 6RC.
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CMOS All-pass Filter Design

• The gain of all-pass filter is tunable (from -4 dB to 2 dB). A binary weighted resistor
DAC is utilized in the subtractor to tune the gain.

• Resistors in the RC section of all-pass filter are replaced using resistor DACs to tune
the propagation delay (from 1.2 ns to 1.7 ns).

• The tunablity of the all-pass filter is important for calibration and compensating PVT
variations.
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CMOS Implementation of the Internal Module

• Resistors Rbig are used to DC bias the op-amp. They are implemented as pseudo
resistors.

• Accurate implementation of the continuous-time delay operator τ is an important
task of the designing process.

• Here, the continuous-time delay operator τ = τ1 + τ2 + τ3. The signal at the
output of the buffer can be denoted as Ez(i, t− τ).

• The group delay τ4 is configured such that τ4 = τ − τ5.
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CMOS Implementation of the Internal Module
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Analog Computer for Solving 1-D Wave Equation

• 30MHz of analog bandwidth.

• 200mW of power.

• 16 internal modules.

• Digitally-programmable
boundaries.

• Digital calibration.

• Capable of cascading chips.

N. Udayanga et al., “A Radio Frequency Analog Computer for Computational Electromagnetics,” in IEEE Journal of Solid-State Circuits, vol. 56,
no. 2, pp. 440-454, Feb. 2021
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Analog-digital Hybrid Measurement Setup

• Input excitations and boundary conditions are generated inside a ROACH-2 FPGA
and supplied to the analog chip through a digital-to-analog converter (DAC) board
(DAC2x1000-16).

• Computed analog solutions (computational outputs of the analog chip) are routed
back into the FPGA through a 16-input analog-to-digital converter (ADC) board
(ADC16x250-8).
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Accuracy: Measurements vs MATLAB FDTD

• Themeans squared error percentage is 1%-10% (depending on the spatial location).
N. Udayanga et al., “A Radio Frequency Analog Computer for Computational Electromagnetics,” in IEEE Journal of Solid-State Circuits, vol. 56,
no. 2, pp. 440-454, Feb. 2021
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Estimating the Speed-up

Input signal is 30 MHz

sinusoidal signal with

a sample period of 1.6 ns

Our chip
CUDA C FDTD1

design running on

NVIDIA GeForce GTX

1080 Ti GPU

Computer with two Intel Xeon

Silver 4110 CPU @ 2.10GHz, 8 Core(s),

and 256 GB of RAM

FDTD MATLAB

code
FDTD C code1

Time to simulate

1 ms of physical time
1 ms 420 ms 99 ms 26 ms

Time to simulate

10 ms of physical time
10 ms 4230 ms 984 ms 261 ms

Time to simulate

100 ms of physical time
100 ms 42500 ms 10075 ms 2506 ms

Time to simulate

1000 ms of physical time
1000 ms 423400 ms 101589 ms 27009 ms

Average speedup 420× 100× 26×

• The AC is 420× faster when compared to the NVIDIA GeForce GPU.
• The estimated speedupof the AC is about 100× and 26× compared to theMATLAB-
and C-based FDTD solvers, respectively.
1C-codes was developed by Ocius employee Nathaniel Hawk.
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Estimating the Speedup

Input signal is 30 MHz

sinusoidal signal with

a sample period of 1.6 ns

Our

chip

FDTD

FPGA design

running on

xczu29dr-ffvf1760

RFSoC

@222 MHz

Time to simulate 1 ms

of physical time
1 ms 2.8 ms

Time to simulate 10 ms

of physical time
10 ms 28 ms

Time to simulate 100 ms

of physical time
100 ms 280 ms

Time to simulate 1000 ms

of physical time
1000 ms 2800 ms

Average

speedup
2.8×

Fcompute/Power 0.15 MHz/mW 0.01 MHz/mW

An FPGA-based FDTD solver is implementedonXilinx RF systemon chip (SoC) (xczu29dr-
ffvf1760) using the ZCU1275 board and clocked at 222MHz with about 900mW of dy-
namic power (excluding ADC and DACs). The corresponding speedup of the 180nm
CMOS AC is 2.8× at 200mW.
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Continuous-time Algorithms for Solving Nonlinear
PDEs
• Startingwith a standardnumerical scheme that can solve nonlinear PDEs continuous-
time update equations are obtained using the APDA method.

• Consider 1-D systemwith two conservative variablesu1(x, t) andu2(x, t)with 0 ≤
x ≤ Lx, and the spatial step size∆x = Lx

Nx
. Here, i ∈ {0, 1, . . . ,Nx} is the spatial

index.

LetΦt
i =

[
u1 (i, t)

u2 (i, t)

]
, fti =

[
f1
(
Φt
i

)
f2
(
Φt
i

)], and hti =
[
h1
(
Φt
i

)
h2
(
Φt
i

)], whereΦ is a

vector with two variables u1,u2. f and h are the flux term and source term of
Φ, respectively.
Then we can state the two step continuous-time MacCormack’s
scheme [23–25] as

Φ
p
i = Φt−τ

i − c0
τ

∆x

(
ft−τ
i − ft−τ

i−1

)
+ τht−τ

i ,

Φt
i =

1

2

(
Φt−τ
i +Φ

p
i

)
− c0

τ

2∆x

(
fpi+1 − fpi

)
+
τ

2
hpi .

(15)

Here, superscript p denotes the predictor step.
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Analog Computing Architecture

• SDTC equations are mapped into
circuits.

• Internal modules (IMs) computeΦt
i

at spatial points
i ∈ {1, 2...,N− 1}.

• At the boundaries i = 0 and i = N,
ft−τ
−1 = 2ft−τ

0 − ft−τ
1 and

fpN+1 = 2fpN − fpN−1, respectively.

• Flux term f is in the form
f1 (u1,u2) =
N1∑
k1=0

N2∑
k2=0

αk1,k2u
k1
1 u

k2
2 .
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Nonlinear PDE solving IC for Acoustic Wave
Equation
• A prototype IC was fabricated to solve the acoustic shock wave tube
problem.

H. Malavipathirana et al.,”A Fast and Fully Parallel Analog CMOS Solver for Nonlinear PDEs,” in IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 68, no. 8, pp. 3363-3376, Aug.2021
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Nonlinear PDE solving IC for Acoustic Wave
Equation

• The analog solver models the
propagation of acoustic waves
along a variable area duct and
computes the acoustic flow velocity
and density at 15 spatial grid points.

• Chip consists of 450 op-amps with a
gain bandwidth product of
650 MHz.

• This IC was designed using TSMC
180 nm CMOS technology and
operates at 1.8 V.

H. Malavipathirana et al.,”A Fast and Fully Parallel Analog CMOS Solver for Nonlinear PDEs,” in IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 68, no. 8, pp. 3363-3376, Aug.2021
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Discrete-Time Analog Computer for Solving 1-D
Wave Equation

• Continuous-time AC has higher computational bandwidth, but requires
significant off-line calibration to improve solution accuracy.

• Continuous-time AC requires realization of time delays using on-chip RC
products, which are sensitive to mismatch an process variations [26].

• Discrete-time (DT) circuits provide an attractive solution, since time delays
are directly referenced to a stable clock.

• In DT method, switched-capacitor (SC) based analog circuits can be used to
realize transfer functions that depend only on capacitor ratios, which are
more accurate.

• DT circuit techniques such as auto-zeroing and correlated double sampling
are used to compensate for op-amp imperfections [27].
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DTWave Equation Solver Internal Module

• An internal module computes the wave amplitude at a specific grid
position nx.

• DT wave equation solving AC is capable of solving the generalized wave
equation with local input sources and lossy propagation.

• This IC allows selectable boundary conditions, including Dirichlet,
Neumann, and radiation boundaries.

J. Liang et al., “An Offset-Cancelling Discrete-Time Analog Computer for Solving 1-D Wave Equations,” in IEEE Journal of Solid-State Circuits, vol.
56, no. 9, pp. 2881-2894, Sept. 2021

35/51



Schematic of an Internal Module

• AC-coupled summing amplifier is used as the first stage in each module.
• Auto-zero switch (with initial reset signal ψr) is used to remove op-amp
offset and reset to common mode voltage VCM.

• S/H buffers are utilized to precisly generate a half-clock-cycle delay,
∆t/2 = 1

2fclk
.

J. Liang et al., “An Offset-Cancelling Discrete-Time Analog Computer for Solving 1-D Wave Equations,” in IEEE Journal of Solid-State Circuits, vol.
56, no. 9, pp. 2881-2894, Sept. 2021
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Measurement Setup

• The DT wave equation solving IC was fabricated using TSMC 180 nm
process with die area 3.59mm× 3.13mm.

• The chip provides analog outputs as well as digital outputs via on-chip
∆− Σ ADCs.

• Arduino microcontroller is utilized to program the chip through a SPI bus
to determine the boundary conditions, location of external excitation, and
wave propagation speed.

J. Liang et al., “An Offset-Cancelling Discrete-Time Analog Computer for Solving 1-D Wave Equations,” in IEEE Journal of Solid-State Circuits, vol.
56, no. 9, pp. 2881-2894, Sept. 2021
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Measurement Results

• This figure shows the measured outputs from the solver with radiation
boundary and 0.5 MHz input excitation for a clock frequency of 10 MHz.

• Noise energy to signal energy ratio, γ is -20.4 dB on average (improved
accuracy compared to CT solver [28]).

• Peak SNDR of the analog solver is 41 dB and that of the∆−Σmodulators
is 49 dB.

• DT wave equation solver has a computational bandwidth of 2.5 MHz
without ADCs and 0.25 MHz bandwidth with ADCs.

• This chip operates at 2.2 V and consumes 560 mW of power.
J. Liang et al., “An Offset-Cancelling Discrete-Time Analog Computer for Solving 1-D Wave Equations,” in IEEE Journal of Solid-State Circuits, vol.
56, no. 9, pp. 2881-2894, Sept. 2021
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Analog Computing ICs by Our Team

• Several analog computing ICs were designed by our team as part of a
DARPA sponsored project.

• Continuous-time wave equation solver (chip #1) [29] and discrete-time
wave equation solver (chip #2) [30] ICs were fully tested and verified the
functionality.
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Conclusion

• Analog Computing is suitable for specialized computing tasks such as in scientific
computing where high speed and high energy efficiency is required, but with less
programability.

• Analog computers can be incorporated with digital platforms to improve the per-
formance, leading to hybrid computing.

• Two analog computingmethods have been introduced to compute the continuous-
time solution of PDEs.

• The proposed methods were verified using the electromagnetic wave equation .

• An AC for solving wave equation has been designed, laid out, and fabricated using
180 nm CMOS technology.

• Speed-up results are provided compared toGPU-, CPU- and FPGA-based FDTD solvers.

• The demonstrated continuous-time wave equation solver IC shows a 420× speed-
up improvement compared to NVIDIA GeForce GTX 1080 Ti GPU while consuming
1000× less power at the cost of difficulty in programming and low precision.
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